为了使视频模型能够在不同环境中无缝应用,已经提出了各种视频无监督的域适应性(VUDA)方法来提高视频模型的鲁棒性和可传递性。尽管模型鲁棒性有所改进,但这些VUDA方法仍需要访问源数据和源模型参数以进行适应,从而提高了严重的数据隐私和模型可移植性问题。为了应对上述问题,本文首先将Black-Box视频域的适应(BVDA)制定为更现实但具有挑战性的场景,在该场景中,仅作为Black-Box预测器提供了源视频模型。尽管在图像域中提出了一些针对黑框域适应性(BDA)的方法,但这些方法不能适用于视频域,因为视频模式具有更复杂的时间特征,难以对齐。为了解决BVDA,我们通过应用蒙版到混合策略和视频量的正则化:内部正规化和外部正规化,提出了一个新颖的内野和外部正规化网络(EXTERS),在剪辑和时间特征上执行,并进行外部正规化,同时将知识从从黑框预测变量获得的预测中提炼出来。经验结果表明,在各种跨域封闭设置和部分集合动作识别基准中,外部的最先进性能甚至超过了具有源数据可访问性的大多数现有视频域适应方法。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
基于视频的无监督域适应性(VUDA)方法改善了视频模型的鲁棒性,从而使它们能够应用于不同环境的动作识别任务。但是,这些方法需要在适应过程中不断访问源数据。然而,在许多现实世界中,源视频域中的主题和场景应该与目标视频域中的主题和场景无关。随着对数据隐私的越来越重视,需要源数据访问的方法会引起严重的隐私问题。因此,为应对这种关注,更实用的域适应情景被提出为基于无源的视频域的适应性(SFVDA)。尽管图像数据上有一些无源域适应性(SFDA)的方法,但由于视频的多模式性质,这些方法在SFVDA中产生了退化性能,并且存在其他时间特征。在本文中,我们提出了一个新颖的专注时间一致网络(ATCON)来通过学习时间一致性来解决SFVDA,并由两个新颖的一致性目标保证,即具有跨局部时间特征执行的特征一致性和源预测一致性。 ATCON通过基于预测置信度参与本地时间特征,进一步构建有效的总体特征。经验结果表明,ATCON在各种跨域动作识别基准中的最先进表现。
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译
作为第一个会话级的中文数据集,Chase包含两个单独的部分,即从Scratch(Chase-C)手动构建的2,003个会话,以及从英语SPARC(Chase-T)翻译的3,456个会话。我们发现这两个部分是高度差异,并且作为培训和评估数据不兼容。在这项工作中,我们介绍了SESQL,这是中文的另一个大规模会话级文本到SQL数据集,由5,028个会话组成,所有课程都是从Scratch手动构建的。为了保证数据质量,我们采用迭代注释工作流程,以促进对先前的自然语言(NL)问题和SQL查询的紧张和及时审查。此外,通过完成所有与上下文有关的NL问题,我们获得了27,012个独立的问题/SQL对,允许SESQL用作单轮多DB文本到SQL解析的最大数据集。我们通过使用三个竞争性会话级解析器,并提供详细的分析,对SESQL进行基准测试级文本到SQL解析实验。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
一些语法误差校正(GEC)系统结合了手工制作的规则并获得积极的结果。但是,手动定义规则是耗时和费力的。鉴于此,我们提出了一种方法来自动开采GEC的错误模板。错误模板是旨在识别文本错误的正则表达式。我们使用Web搜寻器从Internet获取此类错误模板。对于每个模板,我们通过使用语言模型困惑作为标准进一步选择相应的纠正措施。基于此方法,我们为中国GEC积累了1,119个错误模板。新提出的CTC-2021中国GEC基准的实验结果表明,梳理我们的误差模板可以有效地改善强GEC系统的性能,尤其是在两种错误类型上,培训数据很少。我们的错误模板可在\ url {https://github.com/hillzhang1999/gec_error_template}中获得。
translated by 谷歌翻译
目前,基于生物和元组的方法在基于跨度的语义角色标记(SRL)任务上表现得很好。然而,基于生物的方法通常需要在预测其参数时为每个谓词编码一次句子,并且基于元组的方法必须处理$ O(n ^ 3)$的巨大搜索空间,大大减少培训和推理效率。解析速度每秒小于50句话。此外,基于生物的和基于元组的方法通常在预测时仅考虑局部结构信息。本文建议将基于端到端的跨度的SRL作为图形解析任务。基于新颖的图形表示模式,我们在近期工作的肩部上呈现快速准确的SRL解析器对高阶语义依赖图解析。此外,我们提出了受限制的维特比程序,以确保输出图的合法性。英语Conll05和Conll12数据集的实验表明,我们的模型在没有训练有素的语言模型的两个设置下实现了新的最先进的结果,并且可以每秒用600句话解析600句话。
translated by 谷歌翻译
无监督域适应(UDA)已成功解决了可视应用程序的域移位问题。然而,由于以下原因,这些方法可能对时间序列数据的性能有限。首先,它们主要依赖于用于源预制的大规模数据集(即,ImageNet),这不适用于时间序列数据。其次,它们在域对齐步骤期间忽略源极限和目标域的特征空间上的时间维度。最后,最先前的UDA方法中的大多数只能对齐全局特征而不考虑目标域的细粒度分布。为了解决这些限制,我们提出了一个自我监督的自回归域适应(Slarda)框架。特别是,我们首先设计一个自我监督的学习模块,它利用预测作为辅助任务以提高源特征的可转换性。其次,我们提出了一种新的自回归域自适应技术,其包括在域对齐期间源和目标特征的时间依赖性。最后,我们开发了一个集合教师模型,通过自信的伪标记方法对准目标域中的类明智分发。已经在三个现实世界时间序列应用中进行了广泛的实验,具有30个跨域方案。结果表明,我们所提出的杆状方法明显优于时序序列域适应的最先进的方法。
translated by 谷歌翻译
最近,变压器已成为解决车辆路由问题(VRP)的盛行深度建筑。但是,它在学习VRP的学习改进模型方面的有效性较小,因为其位置编码(PE)方法不适合表示VRP解决方案。本文介绍了一种新颖的双重协作变压器(DACT),以分别学习节点和位置特征的嵌入,而不是像现有的那样将它们融合在一起,以避免潜在的噪音和不相容的相关性。此外,位置特征通过新型的循环位置编码(CPE)方法嵌入,以使变压器有效捕获VRP溶液(即环状序列)的圆形性和对称性。我们使用近端政策优化训练DACT,并设计一种课程学习策略,以提高样本效率。我们应用DACT来解决旅行推销员问题(TSP)和电容的车辆路由问题(CVRP)。结果表明,我们的DACT优于现有的基于变压器的改进模型,并且在合成和基准实例上分别在不同问题大小上表现出更好的概括性能。
translated by 谷歌翻译